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Abstract

The evaluation, comparison, and public report of health care provider performance is essential to 

improving the quality of health care. Hospitals, as one type of provider, are often classified into 

quality tiers (e.g., top or suboptimal) based on their performance data for various purposes. 

However, potential misclassification might lead to detrimental effects for both consumers and 

payers. Although such risk has been highlighted by applied health services researchers, a 

systematic investigation of statistical approaches has been lacking. We assess and compare the 

expected accuracy of several commonly used classification methods: unadjusted hospital-level 

averages, shrinkage estimators under a random-effects model accommodating between-hospital 

variation, and two others based on posterior probabilities. Assuming that performance data follow 

a classic one-way random-effects model with unequal sample size per hospital, we derive accuracy 

formulae for these classification approaches and gain insight into how the misclassification might 

be affected by various factors such as reliability of the data, hospital-level sample size distribution, 

and cutoff values between quality tiers. The case of binary performance data is also explored using 

Monte Carlo simulation strategies. We apply the methods to real data and discuss the practical 

implications..
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1. Introduction

The assessment and report of hospital quality is increasingly important in quality 

improvement efforts as the US health care system undergoes major reform. Because quality 

of care is an abstract and multidimensional construct that cannot be measured directly, 
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measurable indicators are used to characterize three dimensions of quality of care: structure, 

process, and outcome [1]. Structural measures are ‘hardware’ type of characteristics such as 

presence of residence programs in hospitals. Outcome measures refer to responses that 

characterize patient health status following care received, such as the 30-day hospital 

mortality rate after surgery. Process measures are meant to reflect the extent to which a 

provider complies with evidence-based guidelines. For example, we use the compliance rate 

of hospitals on providing influenza vaccination for patients diagnosed with pneumonia to 

illustrate the proposed methods (Section 5). In contrast to outcome measures, profiling 

hospitals on their process measures does not require risk-adjustment [2] when restricted to 

sample of patients eligible for the given procedure. This enables us to build the analytical 

framework on a simple two-stage Gaussian model (Section 2.1), and extensions of our 

methods can be applied to outcome measures (Section 6).

Hospital profiling involves a comparison of a hospital’s performance data to a normative or 

community standard [3]. A major profiling interest is to classify hospitals into quality tiers 

(e.g., top or suboptimal) on the basis of their performance data [4]. This has several 

important policy implications. First, such information could be used by patients, employers, 

and insurance plans to make better choices of hospitals from which they would buy services, 

thus improving hospital performance indirectly through the market. Second, a hospital’s 

quality tier has been used as the basis for pay-for-performance initiatives, which in theory 

improves the quality of providers using direct economic incentives [5]. These initiatives use 

retrospectively collected information on performance measures to provide financial rewards 

to hospitals that show high quality based on these data. For example, the Center for 

Medicare and Medicaid Services (CMS) initiated in 2005 the Premier Hospital Quality 

Incentive Demonstration project that paid bonuses totaling $8.69m to 115 superior (those in 

the upper decile) performing institutions that voluntarily participated in the project [6]. In 

such projects, hospital-specific compliance rates for some standard treatments were used as 

performance indicators. For example, a high tier can be defined as hospitals having 

compliance rate higher than an objective threshold (e.g., 0.9) or a relative threshold (e.g., 

90%-tile of the sample).

There are two main analytical approaches to quantifying hospital quality on the basis of 

performance data collected over patient samples. One popular approach is to use the sample 

average of the chosen quality indicator across patients (or procedures) at hospital level. We 

refer to it as a direct estimator because it is based only on the hospital-specific sample data 

and does not involve data from other hospitals. We borrow this term from the literature of 

small area estimation in surveys [7], treating a hospital as a ‘small area’ (cluster or unit). On 

the other hand, justified by the multilevel structure of hospital performance data, an 

alternative estimation approach uses a shrinkage estimator obtained under a random-effects 

(hierarchical or multilevel) model, which assumes that there exist hospital-specific ‘random 

effects’ drawn from some common distributions. Such models are particularly appealing 

because they have a full account of variation (within-hospital sampling variation and 

between-hospital variation). Past literature has well documented the benefit of using 

shrinkage estimators over direct estimators. See Section 2.1 for more details.
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Given predetermined thresholds (cutoff points), hospital classification can be conducted 

using either direct or shrinkage estimators. Related to the use of shrinkage estimators, 

another advanced approach with a more Bayesian flavor uses posterior probabilities for 

classification [8]. However, the risk of misclassification exists for these approaches because 

hospital quality is an unknown quantity under statistical models, and the uncertainty 

associated with its estimate would lead to misclassification. Such risk is often ignored in 

practice, yet it would have important implications to consumers’ decisions and targeting 

quality improvement efforts [9]. For example, misclassifying hospitals with suboptimal care 

into the tier meant for high quality might lead to detrimental effects to patients who seek 

best care or result in economic loss for those pay-for-performance programs. Although this 

issue has been identified in applied health services research [10], there is little statistical 

literature on systematically studying the classification accuracy of profiling methods.

Recently, Adams et al. [11] pointed out the connection between the reliability of provider 

performance data and risk of misclassification, showing that classifying data with lower 

reliability would be more error-prone. However, several unanswered methodological 

questions remain. One is whether using advanced methods (e.g., shrinkage estimators or 

posterior probabilities) rather than direct estimators might lead to improved accuracy. Given 

the increasing popularity of using hierarchical Bayesian models for provider profiling [12], 

the answer to this question is critical to both practitioners and methodologists. In addition, 

the impact of several key factors including the reliability of data, the distribution of hospital-

level sample size, and the cutoff point between quality tiers have not been well 

characterized. Elucidating these patterns might also have important practical implications. 

For example, patient volume often varies across hospitals, and in practice, those with small 

sample size are often excluded to obtain reliable profiling estimates. Yet, the decision rule 

for the sample size cutoff is often ad hoc (e.g., fewer than 30) and does not depend on the 

actual data. Therefore, it is preferable to have a more rigorous and data-driven procedure. 

Several of these issues have been raised in the discussion of [11] ([13, 14])

These concerns therefore call for more methodological studies on the issue of 

misclassification in hospital profiling. Monte Carlo simulation assessments have been 

conducted in limited cases [15, 16]; yet, there is the lack of systematic studies for identifying 

general patterns. We assess and compare the classification accuracy of conventional and 

advanced approaches both analytically and numerically. The remainder of the paper is 

organized as follows. In Section 2, we introduce a one-way unbalanced random-effects 

model for hospital performance data and present the classification methods. In Section 3, we 

derive the formulae of accuracy measures for these methods under the model and investigate 

some of the properties. In Section 4, we provide numerical illustrations using both real 
examples and simulations, and include some recommendations for practitioners. In Section 

5, we briefly study the case for binary performance data using simulation-based strategies. 

Finally, in Section 6, we discuss limitations of our approach and propose a basis for future 

work.
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2. Statistical background

2.1. One-way normal random-effects model for hospital performance data

For hospital i = 1, …, M, we consider a two-level normal random-effects model:

yi j μi, σ2 N μi, σ2 ,
μi μ, τ2 N μ, τ2 ,

(1)

where yij denotes the performance measurement of patient j at hospital i, j = 1; …, ni, ni is 

the sample size for hospital i, μi is the unknown quality for hospital i, σ2 is the within-

hospital variation, and τ2 is the between-hospital variation. When ni’s are different, this is 

also often referred to as an unbalanced one-way analysis of variance model. An example of 

continuous performance measure yij might be door-to-balloon time for patients having a 

heart attack who require percutaneous coronary intervention or patient waiting time in 

hospital emergency departments (EDs) (Section 4).

Despite its simplicity, model (1) can be viewed as a basic characterization of hospital 

performance and frequently used as a statistical framework for research on profiling [17]. 

Without covariates, it is particularly suitable for process measures. Its extensions and 

generalizations include generalized mixed-effects models for categorical outcomes, risk-

adjustment models including patient-level confounders for outcome measures [2], and 

multivariate generalized mixed-effects models for multiple performance measures [18]. A 

survey of profiling models can be found in [12] and reference therein.

We focus on the expected accuracy of classification methods under model (1). For better 

illustration, we use an alternative form of model (1):

Y i . μi, σ2, ni N μi, σ2/ni ,
μi μ, τ2 N μ, τ2 ,

(2)

where Y i ⋅ = ∑i j yi j/ni Without a loss of generality, we assume that a hospital with larger μi 

has better quality under model (2). We view the collection of sample size over hospitals {ni} 

as fixed quantities for a particular dataset. For the ease of derivation, we assume that μ, τ2, 

and σ2 are known in model (2), although these parameters are unknown and require 

estimation from model (1) with actual data. Therefore, we further assume that the 

estimators, under either classic or Bayesian estimation strategies, are consistent under some 

regularity conditions. We also consider a Bayesian version of model (1) where μ, τ2, and σ2 

are treated as random variables. See Section 3 for more details.

Under model (2), the direct estimator for μi is Y i ⋅, and the shrinkage estimator is 

BiY i ⋅ + 1 − Bi μ, where Bi = τ2/(τ2 + σ2/ni) is the shrinkage factor [19], also the reliability 

measure (Section 2.3). Theoretical arguments [20] and empirical studies [21] have 

demonstrated the improved average point predictive ability of shrinkage estimators over 
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direct estimators. In addition, the shrinkage of the direct estimator toward the overall average 

implies that the shrinkage prediction adjusts for regression-to-the-mean [22,23]. The 

weighting scheme of the shrinkage estimator also allows increased precision for units with 

small ni (i.e., ‘stabilizing’). However, from our limited experience, there is less research on 

demonstrating the advantages, if any, of using shrinkage estimators (and posterior 

probabilities) for the purpose of classifying clusters/units. We investigate this topic in the 

context of hospital classification.

2.2. Classification methods

For simplicity, we consider only two tiers (‘high’ and ‘suboptimal’), although the methods 

can be readily extended to more than two tiers. In a straightforward manner, we compare the 

point estimate for the quality μi against some threshold to decide which tier hospital i 

belongs to: it would be included in the high tier if μi is greater than the threshold and 

included in the other tier otherwise. The cutoff value can be either absolute or relative. We 

focus on using the relative threshold for classification. That is, for a given c ∊ (0, 1) (e.g., c = 

0.9), the goal is to select 100(1 − c)% of M hospitals into the top tier. The primary reason for 

using a relative threshold is that all methods would identify an identical proportion of top-

tier hospitals so that the comparison among methods has a common ground. Practically, this 

also aligns with ‘pay-for-performance’ initiatives, which award hospitals whose performance 

estimates place them in top 100(1 − c)% of the sample. We include a brief study for 

classification using an external threshold in Appendix.

The following are two classification methods corresponding to using the direct and 

shrinkage estimators:

Direct method (DIR): Hospital i is included in the high tier if Y i ⋅ > Y i ⋅ 100c
, where 

Y i ⋅ 100c
 denotes the 100c%-tile of the collection of Y i ⋅’s, i = 1, …, M.

Shrinkage method (SHR): Hospital i is included in the high tier if 

BiY i ⋅ + 1 − Bi μ > BiY i ⋅ + (1 −Bi)μ 100c [13].

As both DIR and SHR are solely based on point estimates of μi’s, there exist some proposals 

for incorporating the uncertainty of point estimates. From a Bayesian perspective, 

Christiansen and Morris [8] proposed to make a decision using the posterior probability that 

μi exceeds some threshold, that is, Pr(μi > Cprob|Y) > Pprob, where Cprob is a threshold value 

at performance level and Pprob is the cutoff for the posterior probability. Austin and Brunner 

[24] provided justifications of this approach from the perspective of Bayesian decision 

theory. However, there exist two subtly different methods depending on whether Cprob or 

Pprob is given:

Posterior probability method I (PROB1): Pprob is given, and this requires that all 

selected top-tier hospitals have at least Pprob (posterior) chance of being greater than 

the threshold Cprob. For hospital i, the probability for μi being greater than the 100(1 

− Pprob)%-tile of the posterior distribution of μi is Pprob. If we choose Cprob as the 

100c%-tile of the collection of these percentiles from all hospitals, then we can 
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guarantee that exactly 100(1 − c)% of the M hospitals would be selected into the top 

tier [18]. Typical choices of Pprob are generally greater than 0.5 (e.g., 0.9).

Posterior probability method II (PROB2): Cprob is given, and Pprob = {Pr(μi > Cprob|

Y)}100c. Under model (2), an apparent choice is to set 

Cprob = μi 100c
= μ + τΦ−1(c) [25]. Practical choices of Cprob can be based on 

expert opinions [8].

For all methods, we use sensitivity (the probability of assigning a true top-tier hospital into 

the top tier) and specificity (the probability of assigning a true suboptimal-tier hospital into 

the suboptimal tier) as the accuracy measure. This corresponds to a null hypothesis stating 

that the hospital of interest belongs to a suboptimal tier. These two measures suffice for our 

purpose because the typical measures for misclassification, the false positive rate and false 

negative rate are one minus sensitivity and one minus specificity, respectively.

Misclassification can be readily illustrated by simulation. For example, we set μ = 3.48, τ2 = 

0.29, and σ2 = 2.31 (all are estimates from the real data in Section 4) and use sample size 

{ni} of the data to generate random numbers of {μi} and Y i ⋅  using model (2). Suppose our 

aim is to identify the top 10% from these 329 hospitals in the data. From one simulation, the 

true top-tier hospitals are those for which μi > μ + τΦ−1(0.9) = 4.181, yet the identified top 

performers using DIR are those for which Y i ⋅ > Y i ⋅ 90 = 4.281. The sensitivity is therefore 

Pr Y i ⋅ > 4.281 | μi > 4.181 = 0.608. Figure 1 demonstrates the misclassification using the 

simulated data. The left panel is a scatter plot of {μi} versus Y i ⋅ , divided into four regions 

by {μi}90 and Y i ⋅ 90. The sensitivity is the relative frequency of the sample from the top 

right region over that from the right region. The right panel shows the smoothed marginal 

density plots of {μi} and Y i ⋅  and their respective 90%-tiles, which are purposefully 

overlapped to show the distinction between the two distributions and cutoff values.

2.3. Past literature on reliability and misclassification

In the context of physician cost profiling, Adams et al. [11] suggested using the measure of 

reliability, the between-provider variance divided by the sum of between-provider and 

within-provider variance, to gauge the risk of misclassification. Performance data with 

higher reliability are expected to have better classification accuracy.

A technical argument is sketched here. For hospital i, model (2) implies that

Y i ⋅ μ, τ2, σ2, ni N μ, τ2 + σ2/ni , (3)

Y i ⋅, μi | μ, τ2, σ2, ni BVN
μ
μ

,
τ2 + σ2/ni τ2

τ2 τ2
, (4)
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where BVN (μ, μ, τ2 + σ2/ni, τ2, ρi)denotes a bivariate normal distribution with identical 

mean μ, marginal variance τ2 + σ2/ni and τ2, and correlation coefficient 

ρi = τ2

τ2 + σ2/ni
= Bi, the square root of reliability measure. Note that 

cov Y i ⋅, μi = E Y i ⋅μi − E Y i E μi = E Y i ⋅μi − μE μi = E Y i ⋅μi − μ2. But 

E Y i ⋅μi = EEμi
Y i ⋅μi = E μiEμi

Y i = Eμi
2 = μ2 + τ2, and therefore 

cov Y i ⋅, μi = μ2 + τ2 − μ2 = τ2.

By using DIR, the expected sensitivity of identifying top 100(1 − c)% of hospitals is 

Pr Y i ⋅ > Y i ⋅ , 100c | μi > μi, 100c, μ, τ2, σ2, ni = Φ2 Z1 > Φ−1(c), Z2 > Φ−1(c), ρi /(1 − c), and 

the specificity is Φ2 Z1 < Φ−1(c), Z2 < Φ−1(c), ρi /c. In both formulae, Φ() denotes the 

cumulative distribution function of a standard univariate normal, and Φ2() denotes the 

cumulative distribution function of a standard bivariate normal (Z1 and Z2) with correlation 

coefficient ρi. Given a fixed c, Φ2 is a monotonic function of ρi [26], hence both sensitivity 

and specificity increase with higher reliability.

However, an implicit assumption behind the aforementioned reasoning is equal sample size 

per hospital, that is, ni = n for i = 1, … M. Less is known for the accuracy of all considered 

methods in the case of unequal sample size across hospitals routinely encountered in 

practice. Section 3 provides our answers to these questions.

3. Accuracy of classification approaches

3.1. Linear classifiers

Under model (2), the sensitivity from DIR is

 Pr   Yi ⋅ > Yi ⋅ 100c
μi > μi 100c

, μ, τ2, σ2, ni =
 Pr  Yi ⋅ > Yi ⋅ 100c

, μi > μi 100c
| μ, τ2, σ2, ni

 Pr  μi > μi 100c
| μ, τ2, σ2, ni

.

The denominator is 1 − c. For the numerator, we treat Y i ⋅  as independent realizations of a 

univariate random variable, denoted by μi, DIR. The key is to obtain its marginal distribution 

f μi, DIR | μ, τ2, σ2, ni  (the smoothed marginal density plot of Y i ⋅  in right panel of Figure 

1) and its joint distribution with μi, f μi, DIR, μi | μ, τ2, σ2, ni . Because 

f Y i ⋅ | μ, τ2, σ2, ni = N μ, τ2 + σ2/ni  by Eq. (3), and noting that hospital i has an independent 

1/M probability being in the sample, f μi, DIR | μ, τ2, σ2, ni  is a mixture of normals, denoted 

as 1
M ∑ iN μ, τ2 + σ2/ni . Similarly, 

f μi, DIR, μi | μ, τ2, σ2, ni = 1
M ∑ iBVN μ, μ, τ2 + σ2/ni, τ2, ρi , a mixture bivariate normals.
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The aforementioned reasoning can be generalized to a class of linear classifiers aiY i ⋅ + bi, 

where ai and bi are functions of μ, τ2, σ2, and ni. This is motivated by the fact that both DIR 

and SHR can be considered as a linear combination of Y i ⋅ and μ. Later, the four 

classification methods are shown to be special cases of this linear classifier. Viewing 

aiY i ⋅ + bi  as independent realizations of a univariate random variable μi, LIN, then under 

model (2)

f aiY i ⋅ + bi | μ, τ2, σ2, ni = 1
M ∑

i
N aiμ + bi, ai

2 τ2 + σ2/ni , (5)

f aiY i ⋅ + bi , μi | μ, τ2, σ2, ni = 1
M ∑

i
BVN aiμ + bi, μ, ai

2 τ2 + σ2/ni , τ2, ρi , (6)

both of which are mixture of normals.

The sensitivity of using the linear classifier is 

Pr μi, LIN > μi, LIN 100c
μi > μi 100c

, μ, τ2, σ2, ni =

 Pr  μi, LIN > μi, LIN 100c
, μi > μi 100c

| μ, τ2, σ2, ni

 Pr  μi > μi 100c
| μ, τ2, σ2, ni

.

 The denominator is 1 − c. Let 

cLIN = μi, LIN 100c
, then cLIN has to satisfy ∑ iΦ

cLIN − aiμ + bi

ai
2 τ2 + σ2/ni

= Mc. The numerator is 

an average of cumulative distribution functions of bivariate normals. After some 

simplification (Appendix), we obtain

SENLIN = 1
M(1 − c) ∑i

Φ2 Z1i >
cLIN − aiμ + bi

ai
2 τ2 + σ2/ni

, Z2i > Φ−1(c), ρi , (7)

SPELIN = 1
Mc ∑

i
Φ2 Z1i <

cLIN − aiμ + bi

ai
2 τ2 + σ2/ni

, Z2i < Φ−1(c), ρi , (8)

where SEN and SPE denote sensitivity and specificity, respectively. For simplicity, we omit 

the conditioning statements in equations hereafter.
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For DIR, ai = 1 and bi = 0. For SHR, ai = Bi and bi = (1 − Bi)μ. For PROB1 and PROB2, 

because f μi |Y , μ, τ2, σ2, ni = N BiY i ⋅ + 1 − Bi μ, Biσ
2/ni , Pr μi > Cprob |Y > Pprob

(after further conditioning on μ, τ2, and σ2) implies that

BiY i ⋅ + 1 − Bi μ − Φ−1 Pprob Biσ
2/ni > Cprob . (9)

For PROB1 in which Pprob is given, ai = Bi and bi = 1 − Bi μ − Φ−1 Pprob Biσ
2/ni. In 

addition, let hi = BiY i ⋅ + 1 − Bi μ − Φ−1 Pprob Biσ
2/ni, which is the 100(1 − Pprob)%-tile 

of the posterior distribution of μi. From Eq. (9), we obtain that Cprob is {hi}100c (Section 

2.2). However, for PROB2 is which Cprob prefixed, Eq. (9) implies that

Bi

σ2/ni
Y i ⋅ +

1 − Bi

Biσ
2/ni

μ −
C prob 

Biσ
2/ni

> Φ−1 P prob  . (10)

Therefore, ai =
Bi

σ2/ni
, bi =

1 − Bi

Biσ
2/ni

μ −
Cprob
Biσ

2/ni

. Let si =
Bi

σ2/ni
Y i ⋅ +

1 − Bi

Biσ
2/ni

μ −
Cprob
Biσ

2/ni

, 

then Φ−1(Pprob) is {si}100c based on Eq. (10). Plugging these ai’s and bi’s into Eqs. (7) and 

(8), we obtain the sensitivity and specificity functions for all methods (Table I).

With actual data, μ, τ2, and σ2 are unknown and require estimation. We can plug the 

corresponding estimates into these formulae to estimate the accuracy. However, the 

associated uncertainty due to estimation is unknown. Because there generally exists no 

closed-form solution to cLIN, the (asymptotic) variance formulae of the accuracy functions 

are intractable. On the other hand, this problem might be better approached if we adopt a 

Bayesian version of model (1) in which μ, τ2, and σ2 are treated as random variables. For 

each posterior draw of the parameters under the Bayesian model, we calculate the accuracy 

measures using formulae to construct the corresponding posterior distribution, f (SENLIN|Y) 

and f (SPELIN|Y), and then use the credible intervals to summarize the uncertainty.

3.2. Optimal approach

When all ni’s are equal, the sensitivity/specificity from all methods are identical. For 

PROB1, set Pprob = 0.5 makes it identical to SHR. In addition, as all ni’s → ∞ or K = τ/σ 
→ ∞, both sensitivity and specificity → 1 for all methods. When ni’s are different, there is 

generally no closed-form solution to cLIN. Thus, it might be difficult to compare these 

methods algebraically. Section 4.3 provides some numerical comparisons.

To see which method is the optimal one in terms of yielding the highest sensitivity/

specificity, we note that Eqs. (7) and (8), including their special cases in Table I, can be 

framed as an optimization problem subject to a constraint. example Take the of sensitivity, 

the goal is to maximize the objective function 1
M ∑ iΦ2 Z1i > xi, Z2i > Φ−1(c), ρi , subject to 
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∑ iΦ xi = Mc, where xi =
cLIN − aiμ + bi

ai
2 τ2 + σ2/ni

∈ R. This optimization problem can be solved by 

the Lagrange multiplier, L(X, λ) = ∑ iΦ2 Z1i > xi, Z2i > Φ−1(c), ρi − λ ∑ iΦ xi − Mc . After 

some algebra (Appendix), the solution xi* =
Φ−1(c) − Φ−1 λ* + 1 1 − ρi

2

ρi
, where λ* is the 

solution to λ. From Table I, we observe that the cutoff values from DIR and SHR are not the 

solutions because the functional form of xi* does not involve μ yet only involves τ2 and σ2. 

For PROB2, set Cprob = μ + τΦ−1 (c), the cutoff as 
Φ−1(c) + Φ−1 Pprob * 1 − ρi

2

ρi
, and 

λ* = Φ −Φ−1 Pprob * − 1 then we obtain the solutions to the Lagrange multiplier. in 

addition, the second derivative test [27] shows that these solutions (critical points) are 

strictly local maxima (Appendix). These arguments suggest that PROB2 with Cprob = μ + τΦ
−1 (c) is the optimal approach among the linear classifiers.

3.3. Reliability

We derive the reliability measure for direct and shrinkage estimators as a generalization 

from [11] to hospitals with unequal sample size. We follow the definition that reliability is 

the squared correlation between a measurement and true value. For the linear function 

aiY i ⋅ + bi, its correlation with μi is 
cov aiYi ⋅ + bi, μi

var μi var aiYi ⋅ + bi
, conditional on μ, τ2, σ2, and {ni}. 

Under models (5) and (6),

RELIN =
∑iaiτ

2

τ 1
M ∑i aiμ + bi

2 − 1
M ∑iaiμ + bi

2 + 1
M ∑iai

2 τ2 + σ2/ni

(11)

For the direct estimator, set ai = 1 and bi = 0, then REDIR = τ2

τ2 + 1
M ∑ iσ

2/ni
= M /∑ i1/Bi. For 

the shrinkage estimator, set ai = Bi and bi = (1 − Bi)μ, then 

RESHR =
∑ iBi

2τ2

M∑ iBi
2 τ2 + σ2/ni

= ∑ iBi/M.

By Cauchy–Schwartz inequality, 1
M ∑ iBi ⩾ M /∑ i1/Bi, and the equality holds if and only if 

ni = n for each i. Therefore, RESHR ⩾ REDIR, showing that shrinkage estimators generally 

have larger correlation with true quality values than direct estimators, consistent with the 

literature that the former approach produces smaller prediction error.
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4. Numerical illustration

4.1. Data background and setup

Our data come from the 2008 ED component of the National Hospital Ambulatory Care 

Survey (NHAMCS) (http://www.cdc.gov/nchs/ahcd.htm). This annual survey is conducted 

by the Centers for Disease Control and Preventions National Center for Health Statistics. 

The NHAMCS collects data on a nationally representative sample of visits to EDs and 

outpatient departments of non-Federal, short-stay general, or childrens general hospitals and 

uses a multistage probability sample design [28]. The data include multiple visit-related and 

patient-related characteristics. For example, visit-level characteristics include what type of 

provider was seen; what type and number of medications were prescribed; and the times at 

which the patient arrived, was seen by a provider, and was granted a final disposition (either 

discharged or admitted to the hospital).

We focus on the continuous time interval between a patients arrival and the time when they 

are seen by a doctor (provider). Waiting time to see a provider in the ED has been proposed 

as a quality metric by the National Quality Forum and is expected to be reported without any 

adjustment [29]. Our analytic sample consists of 27,151 ED visit-level wait times recorded 

from 329 hospitals and was obtained from the public-use file of NHAMCS. The left panel of 

Figure 2 shows the distribution of sample size {ni} (the number of visits from each ED). We 

apply a log transformation to the wait time before the analysis to make the normality 

assumption of yij in model (1) more plausible. We also exclude the missing cases and obtain 

a weighted average Y i ⋅  at ED level, incorporating the survey design. The right panel of 

Figure 2 shows the distribution Y i ⋅ . Although we estimate the classification accuracy for 

this dataset using developed methods (Section 4.2), we focus on numerically illustrating 

some general patterns of accuracy functions (Sections 4.3–4.5), using elicited parameter 

values from this dataset.

We consider a Bayesian version of model (1) [30], assuming vague priors for the parameters: 

p(μ) ~ N(0, 1000), p(τ) ~ Unif (10−3, 100), and p(σ) ~ Unif (10−3, 100), where Unif denotes 

uniform distribution. We diagnose the convergence of the Gibbs sampling chain in the model 

fitting using statistics developed by [31] and conclude that the Gibbs chain achieves the 

convergence after 1000 iterations (the R statistics is below 1.1). The posterior median 

estimates are μ = 3.48, τ2 = 0.29 and σ2 = 2.31 based on 1000 posterior samples after 

discarding the first 1000 iterations.

4.2. Estimating the accuracy

We use R (www.r-project.org) library ‘nor1mix’ to obtain the cutoff points for normal 

mixtures and library ‘mvtnorm’ to obtain the cumulative distribution functions of bivariate 

normals (sample code attached in Appendix). Although hospitals with shorter wait time are 

considered as having better quality, it is unnecessary to reverse the signs in formulae of 

Table I because of the symmetry of the normal distribution function. That is, the accuracy of 

identifying top and bottom (1 − c)100% of hospitals are identical, and the formulae can 

therefore be directly applied. For identifying top 10% of the hospitals, Table II shows the 
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estimates by plugging in μ, τ2, σ2 from the formulae as well as Bayesian estimates from 

1000 posterior draws. The plug-in estimates are rather close to the posterior medians. Using 

PROB2 yields the highest accuracy, and around a half more hospital would be correctly 

identified compared with using DIR(329×0.1×(0.778 − 0.765) = 0.423). Of additional note 

is that the Bayesian method provides credible intervals to quantify the uncertainty of the 

estimates.

4.3. Comparison among methods

For practitioners without sophisticated statistical background, DIR versus SHR might be of 

interest because it compares between the naïve method and an advanced approach. This 

directly answers the question from [13] on how well shrinkage estimators perform for 

classification. For methodologists, SHR versus PROB1 and PROB2 might be of interest 

because they all have shrinkage properties, yet there is the lack of comparison among them 

in past literature. In the latter approaches, however, the thresholds in classification can vary. 

Therefore, we choose multiple Cprob’s and Pprob’s in the assessment.

Let K = τ/σ characterize the between/within-hospital standard deviation ratio, a measure of 

reliability. We fix μ = 3:48 and τ2 = 0.29 but change σ2 so that K increases from 0.2 to 2 

with a consecutive increment of 0.02. In each scenario, we calculate the sensitivity and 

specificity of identifying top 10% of hospitals using each method. For PROB1, we set Pprob 

= {0.6, 0.7, 0.8, 0.9, 0.95}. For PROB2, we choose Cprob = μ + τΦ−1 (s), where s = {0.25, 

0.5, 0.75, 0.9, 0.95}. Note that the option with s = 0.9 corresponds to the optimal method by 

our theoretical argument (Section 3.2).

Figure 3 shows the comparative patterns. The top panel plots the sensitivity from DIR and 

SHR. When K increases, both sensitivities increase and approach 1. The sensitivity from 

SHR is consistently higher than that from DIR, and the advantage of the former is more 

prominent with smaller K. In addition, because we assess PROB1 using multiple Cprob’s, the 

bottom left panel plots the difference of the sensitivity between PROB1 and SHR, and the 

horizonal line at 0 is the benchmark. It suggests that the sensitivity from PROB1 is 

consistently lower than that from SHR regardless of Pprob chosen. The bottom right panel 

plots the difference of sensitivity between PROB2 and SHR. When s = 0.9, which 

corresponds to the optimal classification, the sensitivity from PROB2 is slightly higher than 

SHR with smaller K yet indistinguishable as K increases, consistent with the theoretical 

argument. But for s ≠ 0.9, the sensitivity from PROB2 is apparently lower, corresponding to 

the curves below the benchmark line. The comparative pattern for specificity is similar 

(results not shown). These results suggest that PROB2 (with appropriately chosen Cprob = μ 
+ τΦ−1 (c)) and SHR are the preferred methods to DIR and PROB1.

4.4. The impact of hospital-level sample size on accuracy

Equations (7) and (8) show that the accuracy function is an average of contributions from 

each hospital. For sensitivity, the hospital-level contribution is 

S ni = Φ2 Z1i >
cLIN − aiμ + bi

ai
2 τ2 + σ2/ni

, Z2i > Φ−1(c), ρi / ( 1 ‐c ). Showing S(ni) as a function of ni 

He et al. Page 12

Stat Med. Author manuscript; available in PMC 2019 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



while fixing other parameters reveals the impact of the distribution of hospital-level sample 

size on accuracy. Figure 4 plots S(ni) against ni in the example data (Pprob = 0.9 in PROB1 

and Cprob = μ + τΦ−1 (0.9) in PROB2). For each method, the accuracy can be viewed as the 

area under the curve, however weighted by the frequency of the distinct sample size, as 

some hospitals have identical sample size. Clearly, these plots show the complicated impact 

of ni on Sni.

To gain better insight, Table III shows S(ni) evaluated at a few selected sample size. For 

DIR, S(ni) is smaller with a larger hospital (e.g., ni > 50), yet larger with a smaller hospital 

(e.g., ni < 15) compared with other methods, all of which have the shrinkage property. We 

give an intuitive explanation. In general, the accuracy of a classifier improves if the 

estimator has a smaller bias or variance. For a small hospital whose true quality is in the top 

tier, its shrinkage estimate is pulled toward the population average, yet the direct estimate is 

unbiased. Although the variance of the shrinkage estimate might be smaller, the effect of 

bias dominates, and therefore, DIR is a better classifier. This hospital is less likely to be 

classified as the top performer using methods other than DIR, leading to a smaller 

contribution from this small hospital to sensitivity. But for a large hospital whose true 

quality is in the top tier, the shrinkage effect is little, yet its smaller variance makes it a more 

reliable classifier than the direct estimate. Therefore, using shrinkage-based methods other 

than DIR tend to lead to a larger contribution from this large hospital to the sensitivity.

4.5. The impact of cutoff on accuracy

In previous illustrations, c is fixed at 0.9. We now assess the impact of changing c on the 

accuracy of these methods, motivated by the fact that c determines the distribution of quality 

tiers. For example, if identifying top performers is associated with monetary award, for 

which the total amount might be fixed in certain cases, then program evaluators might vary c 
for different options of awarding mechanisms, such as rewarding fewer hospitals with 

paying each more or rewarding more hospitals with paying each less. Figure 5 shows the 

sensitivity and specificity, fixing μ = 3.48, τ2 = 0.29, σ2 = 2.31 and changing c from 0.5 to 

0.9 with a consecutive increment of 0.01. Sensitivity estimates from all methods decrease as 

c increases, as it would be more difficult to distinguish among hospitals on the tail of the 

distribution. PROB1 (Pprob = 0:9) generally has the lowest sensitivity. PROB2 (Cprobe = μ + 

τΦ−1 (c)) and SHR are nearly indistinguishable, and they have better performance than the 

other two methods. As c increases, the advantages from SHR and PROB2 over DIR is more 

prominent, corresponding to the tail of the distribution. The pattern of specificity function 

overall mirrors that from the sensitivity.

4.6. Simulation validation

We conduct a brief simulation study to assess the validity of the developed formulae. We fix 

μ = 3:48, τ2 = 0.29 but change σ2 so that K = 0.2, 0.6, 1.0. For each of the three scenarios, 

we generate random samples of {μi} and Y i ⋅  under model (2) for 100 simulations, using 

sample size {ni} from the example data. For each simulation, we implement two strategies to 

estimate the sensitivity of classifying top 10% of hospitals. One is to plug posterior medians 

of parameters (based on 1000 draws) into the formulae, as the proposed strategy in Section 

3.1. We denote the results as the ‘estimated’ sensitivity. The other is to calculate the 
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proportion of hospitals identified in the top tier among true top performers, because we 

know the true tier status of each hospital from the data generating process. This Monte Carlo 

simulation procedure has been used in literature [15, 16] where the closed-form formulae 

have not been developed. We denote the results as the ‘empirica’ sensitivity. We average 

both ‘estimated’ and ‘empirical’ sensitivity over 100 simulations and compare them with the 

one calculated from the formulae by plugging in true data generating parameters. We refer to 

the latter quantity as the ‘true’ sensitivity. Table IV shows the results, and the closeness 

between three sensitivity estimates suggest the validity of the formulae. The validation 

results for specificity are similar (not shown).

4.7. Practical implications

We discuss some of the practical implications from the methodological development. First, 

the developed formulae provide an accessible tool for practitioners to quantify the accuracy 

from different classification methods. Rather than merely identifying hospitals in quality 

tiers, we recommend practitioners also reporting estimated accuracy associated with the 

classification, analogous to providing variance of point estimate in statistical analysis. Such 

information might be helpful for the decision making, as apparently the classification with 

suboptimal accuracy might be less preferable. In addition, the preferred classification 

methods are SHR and PROB2 (with Cprob = μ + τΦ−1 (c)) based on our evaluation results.

The estimates of accuracy can also be used to refine classification. One conventional 

practice in hospital profiling is to exclude those with small samples to obtain more reliable 

hospital-level performance estimates. However, there exists no formal rule on how small a 

hospital would need to be for exclusion. If the primary goal is to tier hospitals, we can 

remove small hospitals sequentially with increasing sample size, estimate the classification 

accuracy for those remain in the data, and identify the appropriate cutoff based on the 

desired level of accuracy. For example, Figure 6 shows the sensitivity estimates from 

PROB2 in classifying top 10% of hospitals when small hospitals (ni ranges from 1 to fewer 

than 30) are excluded sequentially from the example data. The sensitivity overall increases 

as small hospitals are excluded. However, we see some fluctuation because the estimates of 

μ, τ2, and σ2 vary with different hospitals excluded. Suppose, we would like to achieve at 

least 75% for the sensitivity, then hospitals with fewer than 10 patients might need to be 

excluded. Compared with some ad hoc rules (e.g., exclude hospitals with ni < 20 regardless 

of the data structure), this data-based procedure would prevent one from excluding too many 

(or too few) small hospitals.

The developed formulae might also be useful for designing profiling studies. For example, to 

estimate the required sample size for achieving the desired accuracy in classification, we can 

solve ni’s from the accuracy functions in Table I when either sensitivity or specificity is 

predetermined. A simple solution is to assume equal sample size per hospital. But it might 

be impractical because hospital volume often varies. For example, it is unlikely that many 

patients can be recruited for some rural hospitals within a limited study period. We can 

stratify the distribution {ni} (e.g., using historical data) and solve for the required ni’s from 

each strata. For instance, we might divide hospitals into three groups (large, medium, and 

small) based on their volume and assume that the average sample size in the small-volume 
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hospitals is nS and that in the medium-volume and large-volume hospitals are nM = K1n and 

nL = K2n, respectively. On the basis of some empirical estimates of K1 and K2, we could 

solve for nS, nM, and nL from the formulae.

5. Binary outcome

We next consider the extension to a binary performance measure. The example dataset is a 

subset of the hospital compare database (www.hospitalcompare.hhs.gov), which is collected 

by CMS and includes process performance measures from 4000 plus US hospitals for care 

delivered to patients eligible for Medicare. We use one measure designated for assessing the 

compliance rate of ‘Influenza vaccination’ for patients diagnosed with pneumonia from 

October 2005 to September 2006. For each hospital, the data contain the number of patients 

who were admitted and were eligible for the therapy (denominator) and the number of 

eligible patients who received the treatment (numerator). The guidelines for defining the 

eligibility for a patient and sample selection criteria are given by the specifications from 

CMS. The dataset includes 3304 hospitals with nonmissing values for both numerator and 

denominator.

Because of the binary nature of the outcome, we consider a logistic-normal model [32]:

yi |ni, pi  Binomial  ni, pi ,

log
pi

1 − pi
| μB, τB

2 N μB, τB
2 ,

(12)

where yi is the number of patients receiving the vaccination at hospital i (numerator), ni is 

the hospital-level patient size (denominator), pi is the hospital-level compliance rate, and μB 

and τB
2  are the mean and variance of the random effects on the logit scale of pi. A larger pi 

might indicate a higher compliance rate for hospital i for the vaccination procedure, 

implying a better quality.

Similar to the case of continuous measures (Section 2), we consider four classification 

methods:

DIR: Hospital i is included in the high tier if pi, DIR = yi/ni > pi, DIR 100c
.

SHR: Hospital i is classified the high tier if pi, SHR > pi, SHR 100c
, where pi, SHR is 

the shrinkage estimator for pi under model (12).

PROB1: Hospital i is included in the high tier if  Pr  pi > Cprob |Y > Pprob, where 

Pprob is given.

PROB2: Hospital i is included in the high tier if  Pr  pi > Cprob |Y > Pprob, where 

Cprob is given.
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However, unlike model (2), closed-form formulae for accuracy measures under model (12) 

are intractable. We use a simulation-based strategy to assess and compare among different 

methods. We first fit model (12) to the dataset using a Bayesian scheme assuming vague 

priors: p(μB) ~ N(0, 1000), p(τ) ~ Unif (10−3, 100). The posterior medians for parameters 

are μB = 1.1 and τB
2 = 1.4 based on 1000 draws. In the simulation, μB is fixed at 1.1, and we 

increase τB
2  from 0.1 to 4.0 with a consecutive increment of 0.1 to reflect an increasing 

between-hospital variation. For each combination of μB and τB
2 , we use the actual sample 

size {ni} to generate data {yi} under model (12) for 100 replicates. We apply the four 

methods to each replicate to identify top 10% of hospitals (PROB1: Pprob = 0.9; PROB2: 

logit.(Cprob) = μB + τBΦ−1 (0.9)). We calculate the average ‘empirical’ sensitivity and 

specificity over 100 simulations.

Figure 7 shows the sensitivity estimates within the range of τB
2 . The results seem to suggest 

that with an increasing τB
2 , the sensitivity from all methods overall increase. DIR has the 

lowest sensitivity. Both SHR and PROB2 have some advantages over the other two methods, 

and they are nearly indistinguishable over the range of τB
2  tested. Results for the specificity 

function reflect similar patterns (not shown). Overall, the comparative pattern is similar to 

that for continuous measures under normal random-effects models (Section 4).

In addition, we might use a double simulation strategy to yield the variation of the estimate 

of accuracy measures. First, we obtain posterior draws of μB and τB
2  from p μB, τB

2 |Y . Then, 

for each draw of parameters, we treat them as true values of parameters to generate random 

samples of {yi}and obtain the average accuracy estimates across simulations as described 

earlier. Ignoring the Monte Carlo error, this constitutes a posterior sample of the accuracy 

function, from which the 95% credible interval can be constructed. However, this strategy 

might be computationally intensive.

An alternative strategy is to apply the arcsine square root transformation to the proportion 

data by considering the model [33]

yi |ni, pi Binomial  ni, pi ,
θ i = arcsin yi/ni |ni, θi ˙ N θi, 1/4ni ,
θi | μθ, τθ

2 N μθ, τθ
2 ,

(13)

where θi = arcsin pi . On the transformed scale θi, model (13) is reduced to model (2) with 

σ2 set to 1/4. Because θi is a monotonic transformation of pi, the accuracy of classifying 

hospitals on pi can be readily calculated on θi using formulae in Table I.

However, the simulation-based strategy might be a more viable strategy for models with 

more complicated features such as with risk adjustment or non-normal random effects 

(Section 6) when closed-form formulae are lacking. Using software familiar to practitioners 
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(e.g., R and WinBUGS), this approach can be largely automatic with well-specified input 

such as hospital-level sample size, population mean of the underlying quality, and between/

within hospital variation. For model (12), the simulation programming code is available 

upon request.

6. Discussion

Profiling hospitals using performance data is an important activity in both research and 

practice. The purpose of this study is to assess and compare the accuracy of several 

commonly used approaches to classifying hospitals into quality tiers. We derive the function 

of expected accuracy for these methods under the classic unbalanced one-way random-

effects model (2), the basic form of profiling models. Our study shows that the optimal 

approach is to use posterior probabilities for classification (PROB2) and set Cprob = {μi}100c. 

Our numerical evaluations show that the classification using SHR might have comparable 

performance. Therefore, we suggest that practitioners use these two methods rather than 

other alternatives. However, for data with high reliability (larger between than within-

provider variance), there is little difference among these methods. We advocate practitioners 

calculating and reporting the expected accuracy of the classification using the developed 

formulae or simulation strategies.

Actual hospital performance data often have complicated structure and therefore require 

more sophisticated statistical models. Our study is based on the one-way random-effects 

model, a largely simplified analytical framework. Our research is therefore a building block, 

and there exist several limitations, which deserve future research. For example, our 

simulation results for the binary performance data also suggest that PROB2 has the highest 

classification accuracy. This prompts us to ponder the generality of this pattern. If we view 

competing classification approaches as alternative decisions, then the goal of identifying top 

100(1 − c)% of hospitals with the largest μi’s has the utility function U(d, μi) = I(μi 

>{μi}100c) and the expected utility E(d) = ∫ U d, μi f μi |Y dμi. Arguments from [16, 24], 

which stem from the Bayesian decision theory [34], suggest that the optimal decision should 

maximize E(d) = Pr  μi > μi 100c
|Y . Therefore, choosing top 100(1−c)% of hospitals with 

the largest posterior probability of being greater than {μi}100c would minimize the expected 

misclassification. This argument might hold regardless of model assumptions on the 

distribution of {μi} and data features (e.g., unbalance data). Verification of our conjecture, 

however, requires further research.

Also note from Figure 7, the ‘wiggle’ of the curves suggests that the accuracy functions over 

τ2 for binary performance measures might have more complicated forms than those for 

continuous case, which is apparently more smooth (Figure 3). One future research topic, 

with a more technical flavor, is to obtain approximation formulae for accuracy measures 

under model (12). This problem might be related to the well-known problem of constructing 

approximate confidence intervals for binomial proportions [35]. Approximation formulae 

can be used as off-the-shelf tools for exploratory analysis and might guard against possible 

programming errors in simulation studies.
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In addition, we will consider models with risk adjustment that are suitable for outcome 

performance measures, controlling for patient-level confounders. An example is

yi j = β0i + β1xi j + ϵi j, ϵi j N 0, σ2

β0i N β0, τ2 ,
(14)

where the risk is adjusted through covariates xij. The random effects β0i, unexplained by 

risk-adjustment, quantifies the quality of hospital i. For an estimator of β0i, β0i, the 

sensitivity of using β0i to classify top 100(1−c)% hospitals is 

 Pr  β0i > β0i 100c
β0i > β0i 100c

, β0, β1, τ2, σ2, ni .

When the normality assumption of the random-effects models (1, 12, and 14) is violated, as 

often happen for actual data, the problem of classification might be considerably harder. We 

foresee two future research directions. One is to conduct simulation-based comparative 

studies, assessing the performance of the classification approaches on data generated from 

models with non-normal random effects. However, when applying these methods, we still 

assume normal random-effects for estimation approaches because the software assuming 

non-normal random effects is not readily available. Similar studies can be found in [36–38], 

where they studied the behavior of the estimates for fixed effects and variance components 

under mis-specified linear or generalized linear mixed effects models. Another research 

topic is to estimate the classification accuracy using semiparametric Bayesian approach, 

such as using Dirichlet process prior to model non-normal random effects [39, 40].

The methods development for a single outcome can be extended to the case in which 

hospital programs collect and report multiple yet related performance indicators. A 

commonly used strategy is to summarize these measures into a unidimensional composite 

score and to classify the programs using the summary score. The composite score can be 

constructed using a simple average or estimated via Bayesian hierarchical latent models [18, 

41–43]. Because a latent variable in general can also be treated as random-effects [44], the 

developed formulae under model (2) might be extended to the summary scoring approach.

A related technique in profiling is to rank hospitals, and there exist a large body of related 

literature. For example, [45] pointed out that ranking based on the posterior distribution of 

ranks is more optimal than ranking based on the posterior means under a two-stage model as 

in Eq. (2). Lockwood et al. [46] performed a simulation-based investigation on the 

performance of optimal ranking procedures and related percentile methods, showing their 

considerable variations within a normal range of reliability. Lin et al. [47] presented a 

theoretical study of optimal ranking procedures under various loss functions. For the loss 

function on identifying top 100(1−c)% of the units using ranks, they have shown that the 

optimal ranking is asymptotically equivalent to the ‘exceeding probability’ procedure, which 

is better than ranking using observed means or posterior means. This is consistent with our 

finding that PROB2 achieves better accuracy than DIR or SHR for classification under 
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model (1). Therefore, additional research might be conducted to elucidate the connection 

between ranking and classification.

Finally, although our research is motivated from hospital classification, the methods might 

also be applied and extended to other settings involve program classification, most notably 

for the performance indicators in education [48–50].
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Appendix

Classification using an external threshold (Section 2.2)

We develop the functions for accuracy measures if an absolute threshold c1 is used. The 

sensitivity from using the linear classifier is

Pr  μi, LIN > c1 μi >c1, μ, τ2, σ2, ni = 1

MΦ
μ − c1

τ

∑
i

Φ2  ×

Z1i >
c1 − aiμ + bi

ai
2 τ2 + σ2/ni

, Z2i >
c1 − μ

τ , ρi ,  

and the specificity is

Pr μi, LIN < c1 μi < c1, μ, τ2, σ2, ni =   1

MΦ
c1 − μ

τ

∑
i

Φ2 ×

Z1i <
c1 − aiμ + bi

ai
2 τ2 + σ2/ni

, Z2i <
c1 − μ

τ , ρi .

In the following, we gauge the behavior of the classifier using the direct and shrinkage 

estimators. For brevity, we do not consider the classifier using posterior probabilities 

because it require an additional cutoff on probability scale. We consider the sensitivity, 

specificity, and probability of correct classification (PCC) as a summary measure of 

sensitivity and specificity [51]. After some algebra, the corresponding formulae are derived 

and listed in Table A1.

We focuses on the comparison between the two classifiers. Without a loss of generality, 

suppose c1 > μ, then
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c1 − μ
τ /ρi

<
c1 − μ

τρi

Φ2 Z1i >
c1 − μ

τ /ρi
, Z2i >

c1 − μ
τ , ρi > Φ2 Z1i >

c1 − μ
τρi

, Z2i >
c1 − μ

τ , ρi

1

MΦ
μ − c1

τ

∑
i

Φ2 Z1i >
c1 − μ

τ /ρi
, Z2i >

c1 − μ
τ , ρi

> 1

MΦ
μ − c1

τ

∑
i

Φ2 Z1i >
c1 − μ

τρi
, Z2i >

c1 − μ
τ , ρi

SENDIR > SENSHR .

(A1)

An intuitive explanation for Eq. (A1) is that compared with the true quality μi, the direct 

estimator μi, DIR tend to be over-dispersed yet the shrinkage estimator μi, DIR shrunk to the 

center. If the goal is to identify the hospitals on the right tail (top performers), then SHR is 

more likely to miss them because of the shrinkage and therefore has a lower sensitivity than 

DIR. It can also be shown that SPECDIR < SPECSHR. When c1 < μ, the inequality switches. 

When c1 = μ, SENDIR = SENSHR, and SPECDIR = SPECSHR.

Table A1.

Sensitivity, specificity, and probability of correct classification for classifying hospitals using 

the external threshold c1.

Method Accuracy measures

DIR
Sensitivity: 

1

MΦ
μ − c1

τ

∑iΦ2 Z1i >
c1 − μ

τ /ρi
, Z2i >

c1 − μ

τ , ρi

Specificity: 
1

MΦ
μ − c1

τ

∑iΦ2 Z1i <
c1 − μ

τ /ρi
, Z2i <

c1 − μ

τ , ρi

PCC: 
1
M ∑i Φ2 Z1i >

c1 − μ

τ /ρi
, Z2i >

c1 − μ

τ , ρi + Φ2 Z1i <
c1 − μ

τ /ρi
, Z2i <

c1 − μ

τ , ρi

SHR
Sensitivity: 

1

MΦ
μ − c1

τ

∑iΦ2 Z1i >
c1 − μ

τ /ρi
, Z2i >

c1 − μ

τ , ρi

Specificity: 
1

MΦ
μ − c1

τ

∑iΦ2 Z1i <
c1 − μ

τ /ρi
, Z2i <

c1 − μ

τ , ρi
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Method Accuracy measures

PCC: 
1
M ∑iΦ2 Z1i >

c1 − μ

τ /ρi
, Z2i >

c1 − μ

τ , ρi + Φ2 Z1i <
c1 − μ

τ /𝓁i
, Z2i <

c1 − μ

τ , ρi

DIR, direct method; SHR, shrinkage method; PCC, probability of correct classification.

Despite the trade-off between sensitivity and specificity of the two methods, one might 

wonder which method yields higher PCC. Note that PCC for both methods is an average of 

Φ2 Z1i > xi, Z2i >
c1 − μ

τ , ρi + Φ2 Z1i < xi, Z2i <
c1 − μ

τ , ρi , where xi =
c1 − μ

τ /ρi
 for DIR and 

xi =
c1 − μ

τρi
 for SHR. Let Li = Φ2 Z1i > xi, Z2i >

c1 − μ

τ , ρi + Φ2 Z1i < xi, Z2i <
c1 − μ

τ , ρi

we seek to find the maxima of Li as a function of xi. After some algebra, we obtain 

∂Li/ ∂xi = ϕ xi 2Φ

c1 − μ

τ − ρixi

1 − ρi
2 − 1 . Set it as 0 leads to xi =

c1 − μ

τρi
. In addition 

∂2Li/ ∂xi
2 |

xi =
c1 − μ

τρi

= ϕ
c1 − μ

τρi

2
2π

−ρi

1 − ρi
2 < 0. therefore Li achieves the local maxima for 

xi =
c1 − μ

τρi
, corresponds to SHR. Sum it over i and take the average, then PCCSHR > 

PCCDIR. More generally, SHR yields the highest PCC among all linear classifiers when an 

external threshold is used.

We use the example data in Section 4 to illustrate the comparative pattern. We set c1 = sτ, 

where s varies from −2 to 2 with a consecutive increment of 0.01, and calculate the 

sensitivity, specificity, and PCC of DIR and SHR using various c1’s. Figure A1 plots the 

results, showing the trade-off of sensitivity and specificity between two methods, and the 

superiority of SHR over DIR for PCC across all c1’s.
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Derivations of Eqs. (7) and (8) (Section 3.1)

Figure A1. 
Top left panel: sensitivity from direct method (DIR) and shrinkage method (SHR) (square: 

DIR, circle: SHR). Top right panel: specificity from DIR and SHR. Bottom panel: 

probability of correct classification from DIR and SHR. X-axis: 
c1 − μ

τ .

The sensitivity of using the linear classifier is

Pr μi, LIN > μi, LIN 100c
| μi > μi 100c

, μ, τ2, σ2, ni

=
Pr μi, LIN > μi, LIN 100c

, μi > μi 100c
| μ, τ2, σ2, ni

Pr μi > μi 100c
| μ, τ2, σ2, ni

,
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where μi > {μi}100c means that hospital i belongs to the top-tier, and μi, LIN > μi, LIN 100c

means that hospital i is classified as in the top-tier using the linear classifier μi, LIN. The 

denominator Pr(μi > {μi}100c is 1 − c because we use the relative threshold to identify top 

100(1−c)% of the hospitals, where μi 100c
= μ + τΦ−1c under model (2).

To work out the numerator  Pr  μi, LIN > μi, LIN 100c
, μi > μi 100c

, first let 

cLIN = μi, LIN 100c
, the 100c%-tile of μi, LIN 100c

, this implies that 

 Pr  μi, LIN > cLIN = 1 − c. On The basis of Eq. (5), μi, LIN has a marginal distribution of 

normal mixtures. Therefore, Pr  μi, LIN > cLIN = 1
M Φ

aiμ + bi − cLIN

ai
2 τ2 + σ2/ni

= 1 − c On basis of 

Eq. (6), μi, LIN and μi jointly have a marginal distribution bivariate normal mixtures. 

Therefore, 

Pr  μi, LIN > cLIN, μi > μi 100c
= 1

M ∑iΦ2 Z1i >
cLIN − aiμ + bi

ai
2 τ2 + σ2/ni

, Z2i > Φ−1(c), ρi .

Similarly, for specificity

Pr μi, LIN < μi, LIN 100c
| μi < μi 100c

, μ, τ2, σ2, ni

=
Pr μi, LIN < μi, LIN 100c

, μi < μi 100c
μ, τ2, σ2, ni

Pr μi < μi 100c
μ, τ2, σ2, ni

.

The denominator  Pr  μi < μi 100c
 is c, as 100c% of the M hospitals in the sub-optimal tier. 

For the numerator, the cutoff point cLIN remains the same as that of the sensitivity, whereas 

Pr  μi, LIN < cLIN, μi < μi 100c
= 1

M ∑iΦ2 Z1i <
cLIN − aiμ + bi

ai
2 τ2 + σ2/ni

, Z2i < Φ−1(c), ρi  can still 

be calculated from the bivariate normal mixture, yet with reversed signs from the numerator 

of the sensitivity. Also note that in general 

Φ2 Z1i <
cLIN − aiμ + bi

ai
2 τ2 + σ2/ni

, Z2i < Φ−1(c), ρi + Φ2 Z1i >
cLIN − aiμ + bi

ai
2 τ2 + σ2/ni

, Z2i > Φ−1(c), ρi <

= 1

The equality only holds in some limiting cases (e.g., both cLIN → ∞ and c → 1 or ρi → 
1). This leads to Equations (7) and (8).
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Identifying the optimal linear classifier (Section 3.2)

The optimal classifier is expected to maximize sensitivity or specificity. For sensitivity, the 

goal is to maximize objective function 1
M ∑iΦ2 Z1i > xi, Z2i > Φ−1(c), ρi , subject to 

∑iΦ xi = Mc, where xi =
cLIN − aiμ + bi

ai
2 τ2 + σ2/ni

∈ R. This optimization problem can be solved by 

the Lagrange multiplier. Let L(X, λ) = ∑iΦ2 Z1i > xi, Z2i > Φ−1(c), ρi − λ ∑iΦ xi − Mc , 

then ∂L/ ∂λ = − ∑iΦ xi − Mc , and ∂L/ ∂xi = ∂Φ2/ ∂xi − λϕ xi  where Φ2 abbreviates 

Φ2 Z1i > xi, Z2i > Φ−1(c), ρi  and ϕ() denotes the probability density function of the 

univariate standard normal. Also

Φ2 = ∫
xi

∞∫
Φ−1(c)

∞ 1
2π 1 − ρi

2exp − 1
2

z1i
2 − 2ρiz1iz2i + z2i

2

1 − ρi
2 dz1idz2i

= ∫
xi

∞
ϕ z1i dz1i∫Φ−1(c)

∞ 1
2π 1 − ρi

2exp − 1
2

z2i − ρiz1i
2

1 − ρi
2 dz2i

= ∫
xi

∞
ϕ z1i dz1i∫Φ−1(c) − ρiz1i

1 − ρi
2

∞ − ρiz1i

1 − ρi
2 1

2π
exp − 1

2
z2i − ρiz1i

2

1 − ρi
2 d

z2i − ρiz1i

1 − ρi
2

= ∫
xi

∞
ϕ z1i 1 − Φ

Φ−1(c) − ρi z1i

1 − ρi
2 dz1i .

(A2)

Therefore, ∂Φ2/ ∂xi = − ϕ xi 1 − Φ
Φ−1(c) − ρi xi

1 − ρi
2 , and 

∂L/ ∂xi = ϕ xi (Φ
Φ−1(c) − ρixi

1 − ρi
2 − (λ + 1)), i = 1, …, n.

Set the derivatives to 0, that is, − ∑iΦ xi − Mc = 0 and 

ϕ xi Φ
Φ−1(c) − ρixi

1 − ρi
2 − (λ + 1) = 0, Because ϕ(xi) > 0 for xi ∊ R, then 
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Φ
Φ−1(c) − ρixi

1 − ρi
2 − (λ + 1) = 0, suggesting that the solution to xi, 

xi* =
Φ−1(c) − Φ−1 λ* + 1 1 − ρi

2

ρi
 where λ* is the solution to λ.

For the Hessian matrix, H = ∂2L/ ∂xi∂x j , the off-diagonal element is zero because ∂L/ ∂xi

does not involve xj for j ≠ i. The i-th diagonal element 

∂2L/ ∂xi
2 =

∂ϕ xi
∂xi

Φ
Φ−1(c) − ρixi

1 − ρi
2 − (λ + 1) + ϕ xi ϕ

Φ−1(c) − ρixi

1 − ρi
2

−ρi

1 − ρi
2 . Plugging in 

xi = xi*, the first term drops, and after simplification for the second term, we obtain 

∂2L

∂xi
2 |xi = xi*

= − ϕ xi* ϕ Φ−1 λ* + 1 ρi/ 1 − ρi
2. For any nonzero vector A = (a1,a2, …, an)t, 

the quadratic term AtHA = ∑i − ϕ xi* ϕ Φ−1 λ* + 1 ai
2ρi/ 1 − ρi

2 < 0 Similar derivations 

apply for specificity, and we omit the details.

Sample R code for calculating expected classification accuracy

rm(list=ls());

# library(mvtnorm) is used to calculate cumulative distribution function of bivariate normals; 

library(nor1mix) is used to calculate the quantiles of the normal mixtures;

library(mvtnorm);

library(nor1mix);

# functions sens.formula.vec and spec.formula.vec calculate the cumulative distribution 

functions for bivariate normals on the vector form;

# The parameter q is the cutoff point;

# The parameter x is a 2×1 vector. The first element x[1] is the cutoff point for Z1i in Table I; 

the 2nd element x[2] is the correlation coefficient ρi;

sens.formula.vec=function(q,x)pmvnorm(lower=c(x[1],qnorm(q)),upper=Inf,corr=matrix(c(

1,x[2],x[2],1),2,2))/(1-q);

spec.formula.vec=function(q,x)pmvnorm(lower=-

Inf,upper=c(x[1],qnorm(q)),corr=matrix(c(1,x[2],x[2],1),2,2))/q;

# assign parameter values: true.mean is μ; sigma.square is σ2; tau.square is τ2;

# we assign them as values solicted from Example data in Section 4.

# But they can be changed depending on the any actual data analysts have. true.mean=3.48;
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sigma.square=2.31;

tau.square=0.29;

# K is τ/σ, the ratio of between/within variability.

# K ≈ 0.4;

K=sqrt(tau.square)/sqrt(sigma.square);

# sample.size is {ni}, the vector containing sample size for each hospital;

# we attach the example dataset in Section 4 with the manuscript;

# The users can input the sample size from their own data;

sample.size=scan(file=“ed08_sample_size.dat”, na.strings=“.”);

# N is the number of hospitals, equal to 329.

N=length(sample.size);

# q is the cutoff point, q=0.9 is for classifying top 10% of the hospitals;

# The users can change it to other values they want.

q=0.9;

# prob.class is the probability threshold in prob1 method;

# The users can change it to other values they want.

prob.class=0.9;

# cut.prob is the cutoff value for the prob2 method;

# set it to the upper 90

# The users can change it to other possibel values.

cut.prob=true.mean+qnorm(q)*sqrt(tau.square);

# true.rho.vec is the vector containing correlation coefficient {ρi} true.rho.vec=sqrt(K**2/

(K**2+1/sample.size));

# In the following code, the label “dir” is for DIR method; the label “shr” is for SHR 

method; the label “prob1” is for PROB1 method; the label “prob2” is for PROB2 method;

# marginal.var.dir is the marginal variance of the DIR classifier, corresponding to the 

variance of normal mixturs in Eq. (6)

marginal.var.dir=tau.square+sigma.square/sample.size;
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marginal.var.shr=tau.square**2/marginal.var.dir;

marginal.var.prob1=marginal.var.prob2=marginal.var.shr;

# dir.mixture is the normal mixture for the DIR method, stated in Eq. (6) 

dir.mixture=norMix(rep(true.mean, N), sig2=marginal.var.dir);

# quantile.dir.mixture is the cutoff values for the dir method, stated as cDIR*  in Table I.

quantile.dir.mixture=qnorMix(p=q, obj=dir.mixture);

shr.mixture=norMix(rep(true.mean, N), sig2=marginal.var.shr);

quantile.shr.mixture=qnorMix(p=q, obj=shr.mixture);

prob1.mixture=norMix(true.mean-qnorm(prob.class)*sqrt(K**2/(K**2+1/

sample.size)*sigma. square/sample.size), sig2=marginal.var.prob1);

quantile.prob1.mixture=qnorMix(p=q, obj=prob1.mixture);

prob2.mixture=norMix((true.mean-cut.prob)/sqrt(K**2/(K**2+1/

sample.size)*sigma.square/sample. size), sig2=sample.size*K**2);

quantile.prob2.mixture=qnorMix(p=q, obj=prob2.mixture);

# cut.off.dir is the cutoff for Z1i in the bivariate normal cdf function from DIR method, 

stated in Table I.

cut.off.dir=(quantile.dir.mixture-true.mean)/sqrt(marginal.var.dir);

cut.off.shr=(quantile.shr.mixture-true.mean)/sqrt(marginal.var.shr);

cut.off.prob1=(quantile.prob1.mixture-true.mean+qnorm(prob.class)

*sqrt (K**2/(K**2+1/sample.size)*sigma.square/sample.size)/sqrt(marginal.var.prob1);

cut.off.prob2=(quantile.prob2.mixture*sqrt(K**2/(K**2+1/sample.size)*sigma.square/

sample.size)-true.mean+cut.prob)/sqrt(marginal.var.prob2);

# dir.mat combines cut.off.dir and true.rho.vec from DIR method for the purpose of vector 

computation;

dir.mat=cbind(cut.off.dir, true.rho.vec);

shr.mat=cbind(cut.off.shr, true.rho.vec);

prob1.mat=cbind(cut.off.prob1, true.rho.vec);

prob2.mat=cbind(cut.off.prob2, true.rho.vec);
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# sens.mixture.dir.vec is the sensitivity vector function from DIR method, calculate 

Φ2(Z1i >
CDIR* − μ

τ /ρi
, Z2i > Φ−1(c), ρi)/(1 − c) for each i

sens.mixture.dir.vec=apply(dir.mat, 1, sens.formula.vec, q=q);

sens.mixture.shr.vec=apply(shr.mat, 1, sens.formula.vec, q=q);

sens.mixture.prob1.vec=apply(prob1.mat, 1, sens.formula.vec, q=q);

sens.mixture.prob2.vec=apply(prob2.mat, 1, sens.formula.vec, q=q);

# spec.mixture.dir.vec is the specificity vector function from DIR method; 

spec.mixture.dir.vec=apply(dir.mat, 1, spec.formula.vec, q=q);

spec.mixture.shr.vec=apply(shr.mat, 1, spec.formula.vec, q=q);

spec.mixture.prob1.vec=apply(prob1.mat, 1, spec.formula.vec, q=q);

spec.mixture.prob2.vec=apply(prob2.mat, 1, spec.formula.vec, q=q);

# average over all hospitals for the overall sensitivity of DIR method;

# calculate ∑iΦ2 Z1i >
CDR* − μ

τ /ρi
, Z2i > Φ−1(c), ρi /(M(1 − c)) mean(sens.mixture.dir.vec);

mean(sens.mixture.shr.vec);

mean(sens.mixture.prob1.vec);

mean(sens.mixture.prob2.vec);

# average over all hospitals for the overall specificity of DIR method; 

mean(spec.mixture.dir.vec);

mean(spec.mixture.shr.vec);

mean(spec.mixture.prob1.vec);

mean(spec.mixture.prob2.vec);

# The previous estimates should be corresponding to those in the table ‘DIRECT’ under 

Table II.
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Figure 1. 
Left panel: scatter plot of {μi} versus Y i ⋅ , and the sample space is divided into four regions 

by {μi}90 and Y i ⋅ 90. Right panel: smoothed density plots of {μi} and Y i ⋅  and their 

respective 90%-tiles. Dashed line: true quality {μi}; Concrete line: sample average Y i ⋅ .
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Figure 2. 
Left panel: the distribution of emergency department-level sample size {ni}. Right panel: the 

distribution of direct estimates Y i..

He et al. Page 33

Stat Med. Author manuscript; available in PMC 2019 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Top panel: sensitivity from direct method (DIR) and shrinkage method (SHR) (square: DIR 

and circle: SHR). Bottom left panel: the difference of sensitivity between PROB1 and SHR 

(triangle: PROB1, Pprob takes 0.6, 0.7, 0.8, 0.9, and 0.95 for the five curves from top to 

bottom). Bottom right panel: the difference of sensitivity between PROB2 and SHR (plus: 

PROB2, s = 0:95 for the curve above 0, and s takes 0.25, 0.5, 0.75, and 0.9 for the 4 curves 

below). The classification goal is to identify top 10% of hospitals.
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Figure 4. 
Left panel: hospital size-specific contribution to overall sensitivity. Right panel: hospital 

size-specific contribution to overall specificity. square: direct method (DIR), circle: 

shrinkage method (SHR), triangle: PROB1 with Pprob = 0.9, plus: PROB2 with 

Cprob = μ + τΦ−1(0.9). The classification goal is to identify top 10% of hospitals.
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Figure 5. 
Left panel: sensitivity versus cutoff c. Right panel: specificity versus cutoff c. square: direct 

method (DIR), circle: shrinkage method (SHR), triangle: PROB1 with Pprob = 0.9, plus: 

PROB2 with Cprob = μ + τΦ−1(c). The classification goal is to identify top 100(1 − c)% of 

hospitals.
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Figure 6. 
The sensitivity for classifying top 10% of hospitals when small-size hospitals are 

sequentially excluded. Plus: PROB2 Cprob = μ + τΦ−1(0.9).
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Figure 7. 
Sensitivity estimates for binary performance data. square: direct method (DIR), circle: 

shrinkage method (SHR), triangle: PROB1, plus: PROB2. The classification goal is to 

identify top 10% of hospitals.
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Table I.

Sensitivity and specificity functions for classifying top 100(1 − c)% of hospitals.

Method Accuracy measures

DIR
Cutoff equation: ∑iΦ

CDIR* − μ

τ /ρi
= Mc

Sensitivity: ∑iΦ2 Z1i >
CDIR* − μ

τ /ρi
, Z2i > Φ−1(c), ρi /(M(1 − c))

Specificity: ∑iΦ2 Z1i <
CDIR* − μ

τ /ρi
, Z2i < Φ−1(c), ρi /(Mc)

SHR
Cutoff equation: ∑iΦ

CSHR* − μ

τρi
= Mc

Sensitivity: ∑iΦ2 Z1i >
CSHR* − μ

τρi
, Z2i > Φ−1(c), ρi /(M(1 − c))

Specificity: ∑iΦ2 Z1i <
CSHR* − μ

τρi
, Z2i < Φ−1(c), ρi /(Mc)

PROB1

Cutoff equation: ∑iΦ
Cprob* − μ − Φ−1 Pprob ρi

σ2
ni

τρi
= Mc

Sensitivity: ∑iΦ2 Z1i >
Cprob* − μ − Φ−1 Pprob ρi

σ2
ni

τρi
, Z2i > Φ−1(c), ρi /(M(1 − c))

Specificity: ∑iΦ2 Z1i <
Cprob* − μ − Φ−1 Pprob ρi

σ2
ni

τρi
, Z2i < Φ−1(c), ρi /(Mc)

PROB2

Cutoff equation: ∑iΦ
Cprob − μ − Φ−1 Pprob *ρi

σ2
ni

τρi
= Mc

Sensitivity: ∑iΦ2 Z1i >
Cprob − μ − Φ−1 Pprob *ρi

σ2
ni

τρi
, Z2i > Φ−1(c), ρi /(M(1 − c))

Specificity: ∑iΦ2 Z1i <
Cprob − μ − Φ−1 Pprob *ρi

σ2
ni

τρi
, Z2i < Φ−1(c), ρi /(Mc)
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Note: ρi = τ2

τ2 + σ2/ni
, CDIR* , CSHR* , Cprob*  and Φ−1 Pprob * are the cutoff points.

DIR, direct method; SHR, shrinkage method.
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Table II.

Bayesian estimates of expected accuracy for identifying top 10% of hospitals.

Sensitivity Specificity

Method Direct Posterior median 95%CI Direct Posterior median 95% CI

DIR 0.760 0.765 (0.546, 0.874) 0.974 0.974 (0.950, 0.986)

SHR 0.773 0.778 (0.573, 0.878) 0.975 0.975 (0.953, 0.986)

PR0B1 0.765 0.771 (0.566, 0.871) 0.974 0.975 (0.952, 0.986)

PROB2 0.773 0.778 (0.574, 0.878) 0.975 0.975 (0.953, 0.986)

Note: CI: credible interval. In PROB1 method (Pprob = 0:9). In PROB2 method Cprob = μ + τΦ−1(0.9) .

Direct: plug-in estimates.

DIR, direct method; SHR, shrinkage method.
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Table III.

Individual hospital-level contribution to the overall sensitivity for identifying top 10% of hospitals.

Method

Sample size ni DIR SHR PROB1 PROB2

1 0.553 0.001 5.63 ×10−6 0.004

15 0.670 0.447 0.214 0.498

50 0.741 0.727 0.658 0.738

100 0.777 0.831 0.860 0.823

150 0.795 0.876 0.934 0.860

DIR, direct method; SHR, shrinkage method.
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Table IV.

Simulation validation: sensitivity estimates for identifying top 10% of hospitals.

τ/σ = 0.2

Method True Estimated Empirical

DIR 0.615 0.613 0.612

SHR 0.638 0.635 0.643

PROB1 0.631 0.628 0.636

PROB2 0.639 0.635 0.641

τ/σ = 0.6

DIR 0.853 0.849 0.849

SHR 0.859 0.856 0.850

PROB1 0.852 0.850 0.845

PROB2 0.859 0.856 0.855

τ/σ = 1.0

DIR 0.911 0.904 0.901

SHR 0.913 0.907 0.900

PROB1 0.907 0.901 0.897

PROB2 0.913 0.907 0.903

Note: The data generating parameter μ = 3.48 and τ2 = 0.29. ‘True’ is based on the formulae using the population generating parameters. 
‘Estimated’ is based on the formulae using posterior medians of parameters. ‘Empirical’ is the relative frequency of correctly identified top 
performers from the Monte Carlo procedure. Both ‘estimated’ and ‘empirical’ are averages over 100 simulations.

DIR, direct method; SHR, shrinkage method.
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